

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Flask-Registry 0.2.0 documentation

 Flask-Registry is an extension for Flask that allow frameworks to
dynamically assemble your Flask application from reusable packages consisting
of blueprints, extensions, and configuration.

[image: https://travis-ci.org/inveniosoftware/flask-registry.png?branch=master]
 [https://travis-ci.org/inveniosoftware/flask-registry][image: https://coveralls.io/repos/inveniosoftware/flask-registry/badge.png?branch=master]
 [https://coveralls.io/r/inveniosoftware/flask-registry]
User’s Guide

This part of the documentation will show you how to get started in using
Flask-Registry with Flask.

	Installation
	Requirements

	Quickstart
	A Minimal Example

	Application Discovery Example

	Module Discovery
	Lazy discovery

	Application Discovery
	Packages

	Extensions

	Configuration

	Blueprints

	Package Resources
	Entry points

	Resource files

	Extending Flask-Registry

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

	API Docs
	Core Registries

	Application Discovery

	Module Discovery

	Package Resources

Additional Notes

Notes on how to contribute, legal information and changelog are here for the interested.

	Contributing

	Changelog
	Version 0.2.0 (released 2014-06-27)

	Version 0.1

	License
	Authors

	GNU General Public License

 Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Registry 0.2.0 documentation

Installation

Install Flask-Registry with pip

pip install flask-registry

The development version can be downloaded from its page at GitHub [http://github.com/inveniosoftware/flask-registry].

git clone https://github.com/inveniosoftware/flask-registry.git
cd flask-registry
python setup.py develop
source run-tests.sh

Requirements

Flask-Registry has the following dependencies:

	Flask [https://pypi.python.org/pypi/Flask]

	six [https://pypi.python.org/pypi/six]

Flask-Registry requires Python version 2.6, 2.7 or 3.3+

 Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Registry 0.2.0 documentation

Quickstart

This guide assumes you have successfully installed Flask-Registry and a working
understanding of Flask. If not, follow the installation steps and read about
Flask at http://flask.pocoo.org/docs/.

A Minimal Example

A minimal Flask-Registry usage example looks like this. First create the
application and initialize the extension:

>>> from flask import Flask
>>> from flask_registry import Registry
>>> from flask_registry import ListRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)

Then, we can create a simple ListRegistry that just keeps a list of objects:

>>> r['my_namespace'] = ListRegistry()
>>> r['my_namespace'].register("something")
>>> r['my_namespace'].register("something else")
>>> for obj in r['my_namespace']:
... print(obj)
something
something else

Application Discovery Example

Flask-Registry also has support for dynamically discovering Python modules,
resources, entry points and the like. All this can be put together in your
Flask application factory to create and easily extensible application.

Following is a small example how a Flask application can be assemble from
reusable packages that each provides configuration, extensions and blueprints:

from flask import Flask
from flask_registry import Registry, PackageRegistry, ExtensionRegistry, \
 ConfigurationRegistry, BlueprintAutoDiscoveryRegistry

class Config(object):
 PACKAGES = ['tests']
 EXTENSIONS = ['tests.mockext']
 USER_CFG = True

def create_app(config):
 app = Flask('myapp')
 app.config.from_object(config)
 r = Registry(app=app)
 r['packages'] = PackageRegistry(app)
 r['extensions'] = ExtensionRegistry(app)
 r['config'] = ConfigurationRegistry(app)
 r['blueprints'] = BlueprintAutoDiscoveryRegistry(app=app)
 return app

if __name__ == '__main__':
 config = Config()
 app = create_app(config)
 app.run(debug=True)

Save this in a file named app.py next to the tests folder in the
Flask-Registry distribution and run it using your Python interpreter.

$ python app.py
 * Running on http://127.0.0.1:5000/
$ curl http://localhost:5000
Hello from Flask-Registry

The blueprint is loaded from tests.views and only works if the extension
tests.mockext and the configuration in tests.config has been loaded.

See Application Discovery for full explanation on what is
happening in the example.

 Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Registry 0.2.0 documentation

 Flask extension.

Flask-Registry is initialized like this:

>>> from flask import Flask
>>> from flask_registry import Registry, ListRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)

A simple usage example of ListRegistry looks like this:

>>> app.extensions['registry']['my.namespace'] = ListRegistry()
>>> len(app.extensions['registry'])
1
>>> app.extensions['registry']['my.namespace'].register("something")
>>> app.extensions['registry']['my.namespace'].register("something else")
>>> len(app.extensions['registry']['my.namespace'])
2
>>> for obj in app.extensions['registry']['my.namespace']:
... print(obj)
something
something else

Module Discovery

The module discovery registries provide discovery functionality useful
for searching a list of Python packages for a specific module name, and
afterwards registering the module. This is used to e.g. load and register
Flask blueprints by BlueprintAutoDiscoveryRegistry.

Assume e.g. we want to discover the helpers module from the tests
package. First we initialize the registry:

>>> from flask import Flask
>>> from flask_registry import Registry, ModuleDiscoveryRegistry
>>> from flask_registry import ImportPathRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)

We then create the list of packages to search through using an
ImportPathRegistry:

>>> r['mypackages'] = ImportPathRegistry(initial=['tests'])

Then, initialize the ModuleDiscoveryRegistry and run the discovery:

>>> r['mydiscoveredmodules'] = ModuleDiscoveryRegistry(
... 'helpers', registry_namespace='mypackages')
>>> len(r['mydiscoveredmodules'])
0
>>> r['mydiscoveredmodules'].discover(app=app)
>>> len(r['mydiscoveredmodules'])
1

Lazy discovery

Using RegistryProxy you may lazily discover modules. Above example using
lazy loading looks like this:

>>> from flask_registry import RegistryProxy
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> pkg_proxy = RegistryProxy('mypackages', ImportPathRegistry,
... initial=['tests'])
>>> mod_proxy = RegistryProxy('mydiscoveredmodules',
... ModuleDiscoveryRegistry,
... 'helpers',
... registry_namespace=pkg_proxy)
>>> 'mypackages' in r
False
>>> 'mydiscoveredmodules' in r
False
>>> with app.app_context():
... mod_proxy.discover(app=app)
>>> 'mypackages' in r
True
>>> 'mydiscoveredmodules' in r
True

Application Discovery

The application discovery registries provide discovery functionality useful
for dynamically constructing Flask applications based on configuration
variables. This allows a developer to package config, blueprints and extensions
into isolated and reusable packages which a framework can dynamically install
into a Flask application.

Such a package (named tests) could look like:

	tests.views – contains blueprints which should be registered on the
application object.

	tests.mockext – contains a setup_app() method which be used to
install any Flask extensions on the application object.

	tests.config – contains configuration variables specific for this
module.

Following is a simplified example of a Flask application factory, that will
load config, extensions and blueprints:

>>> from flask import Flask, Blueprint
>>> from flask_registry import Registry, PackageRegistry
>>> from flask_registry import ExtensionRegistry
>>> from flask_registry import ConfigurationRegistry
>>> from flask_registry import BlueprintAutoDiscoveryRegistry
>>> class Config(object):
... PACKAGES = ['tests']
... EXTENSIONS = ['tests.mockext']
... USER_CFG = True
>>> def create_app(config):
... app = Flask('myapp')
... app.config.from_object(config)
... r = Registry(app=app)
... r['packages'] = PackageRegistry(app)
... r['extensions'] = ExtensionRegistry(app)
... r['config'] = ConfigurationRegistry(app)
... r['blueprints'] = BlueprintAutoDiscoveryRegistry(app=app)
... return app
>>> config = Config()
>>> app = create_app(config)

Packages

The config variable PACKAGES specifies the list of Python packages, which
ConfigurationRegistry and BlueprintAutoDiscoveryRegistry
will search for config.py and views.py modules inside.

>>> for pkg in app.extensions['registry']['packages']:
... print(pkg)
tests

Extensions

The config variable EXTENSIONS specifies the list of Python packages,
which the ExtensionRegistry will load and call setup_app(app) on,
to dynamically initialize Flask extensions.

>>> for pkg in app.extensions['registry']['extensions']:
... print(pkg)
tests.mockext

Configuration

The ConfigurationRegistry will merge any package defined config, with the
application config without overwriting already set variables in the application
config:

>>> config.USER_CFG
True
>>> import tests.config
>>> tests.config.USER_CFG
False
>>> app.config['USER_CFG']
True

Blueprints

The BlueprintAutoDiscoveryRegistry will search for blueprints defined
inside a views module in each package defined in PACAKGES. It will
also register the discovered blueprints on the Flask application.
Each views module should define either a single blueprint in the variable
blueprint and/or multiple blueprints in the variable blueprints:

>>> from tests import views
>>> isinstance(views.blueprint, Blueprint)
True
>>> len(views.blueprints)
2
>>> for k in sorted(app.blueprints.keys()):
... print(k)
test
test1
test2

Package Resources

Package resource registries may be used to discover e.g. package resources
as well as loading entry points.

Entry points

setuptools entry points are a simple way for packages to “advertise”
Python objects, so that frameworks can search for these entry points.
setup.py files for instance allows you to specify console_scripts
entry points, which will install scripts into system path for you.

The EntryPointRegistry allows you to easily register these entry points
into your Flask application:

>>> from flask import Flask
>>> from flask_registry import Registry, EntryPointRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> r['scripts'] = EntryPointRegistry('console_scripts')
>>> 'easy_install' in r['scripts']
True

Entry points are specified in you setup.py, e.g.:

setup(
 # ...
 entry_points={
 'flask_registry.test_entry': [
 'testcase = flask_registry:RegistryBase',
]
 },
 # ...
)

>>> r['entrypoints'] = EntryPointRegistry(
... 'flask_registry.test_entry', load=True)
>>> 'testcase' in r['entrypoints']
True
>>> from flask_registry import RegistryBase
>>> r['entrypoints']['testcase'][0] == RegistryBase
True

See http://pythonhosted.org/setuptools/pkg_resources.html#entry-points for
more information on entry points.

Resource files

The PkgResourcesDirDiscoveryRegistry will search a list of Python
packages for a specific resource directory and register all files found in the
directories.

Assume e.g. a package tests have a directory resources with one file
in it called testresource.cfg. This file can be discovered in the following
manner:

>>> import os
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> from flask_registry import ImportPathRegistry
>>> from flask_registry import PkgResourcesDirDiscoveryRegistry
>>> r['packages'] = ImportPathRegistry(initial=['tests'])
>>> r['res'] = PkgResourcesDirDiscoveryRegistry('resources', app=app)
>>> os.path.basename(r['res'][0]) == 'testresource.cfg'
True

Extending Flask-Registry

You can easily create your own type of registries by subclassing one of the
existing registries found in the modules under flask_registry.registries.

If you for instance want to create a list registry that only accepts integers,
you could create it like this:

>>> from flask import Flask
>>> from flask_registry import Registry, RegistryError, ListRegistry
>>> class IntListRegistry(ListRegistry):
... def register(self, item):
... if not isinstance(item, int):
... raise ValueError("Object must be of type int")
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> r['myns'] = IntListRegistry()
>>> r['myns'].register(1)
>>> r['myns'].register("some string")
Traceback (most recent call last):
 File "/usr/lib/python2.7/doctest.py", line 1289, in __run
 compileflags, 1) in test.globs
 File "<doctest default[7]>", line 1, in <module>
 r['myns'].register("some string")
 File "<doctest default[2]>", line 4, in register
 raise ValueError("Object must be of type int")
ValueError: Object must be of type int

 Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Registry 0.2.0 documentation

API Docs

Flask extension.

Flask-Registry is initialized like this:

>>> from flask import Flask
>>> from flask_registry import Registry, ListRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)

A simple usage example of ListRegistry looks like this:

>>> app.extensions['registry']['my.namespace'] = ListRegistry()
>>> len(app.extensions['registry'])
1
>>> app.extensions['registry']['my.namespace'].register("something")
>>> app.extensions['registry']['my.namespace'].register("something else")
>>> len(app.extensions['registry']['my.namespace'])
2
>>> for obj in app.extensions['registry']['my.namespace']:
... print(obj)
something
something else

	
class flask_registry.Registry(app=None)

	Flask extension.

Initialization of the extension:

>>> from flask import Flask
>>> from flask_registry import Registry
>>> app = Flask('myapp')
>>> r = Registry(app)
>>> app.extensions['registry']
<Registry ()>

or alternatively using the factory pattern:

>>> app = Flask('myapp')
>>> r = Registry()
>>> r.init_app(app)
>>> r
<Registry ()>

	
init_app(app)

	Initialize a Flask application.

Only one Registry per application is allowed.

	Parameters:	app (flask.Flask) – Flask application

	Raises RegistryError:

		if the registry is already initialized

	
class flask_registry.RegistryProxy(namespace, registry_class, *args, **kwargs)

	Lazy proxy object to a registry in the current_app

Allows you to define a registry in your local module without needing to
initialize it first. Once accessed the first time, the registry will be
initialized in the current_app, thus you must be working in either
the Flask application context or request context.

>>> from flask import Flask
>>> app = Flask('myapp')
>>> from flask_registry import Registry, RegistryProxy, RegistryBase
>>> r = Registry(app=app)
>>> proxy = RegistryProxy('myns', RegistryBase)
>>> 'myns' in app.extensions['registry']
False
>>> with app.app_context():
... print(proxy.namespace)
...
myns
>>> 'myns' in app.extensions['registry']
True

	Parameters:	
	namespace – Namespace for registry

	registry_class – The registry class - i.e. a sublcass of
RegistryBase.

	args – Arguments passed to registry_class on initialization.

	kwargs – Keyword arguments passed to registry_class on
initialization.

	
class flask_registry.RegistryBase

	Abstract base class for all registries.

Each subclass must implement the register() method.
Each subclass may implement the unregister() method.

Once a registry is registered in the Flask application, the namespace
under which it is available is injected into it self.

Please see flask_registry.registries.core for simple examples of
subclasses.

	
namespace

	Namespace. Used only by the Flask extension to inject the namespace
under which this instance is registered in the Flask application.
Defaults to None if not registered in a Flask application.

	
register(*args, **kwargs)

	Abstract method which MUST be overwritten by subclasses. A subclass
does not need to take the same number of arguments as the abstract
base class.

	
unregister(*args, **kwargs)

	Abstract method which MAY be overwritten by subclasses. A subclass
does not need to take the same number of arguments as the abstract
base class.

	
class flask_registry.RegistryError

	Exception class raised for user errors.

e.g. creating two registries in the same namespace)

Core Registries

The core registries are useful to use as subclasses for other more
advanced registries. The provide the basic functionality for list and
dict style registries, as well as simple import path and module style
registries.

	
class flask_registry.registries.core.ListRegistry

	Basic registry that just keeps a list of objects. Provides normal
list-style access to the registry:

>>> from flask import Flask
>>> from flask_registry import Registry, ListRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> r['myns'] = ListRegistry()
>>> r['myns'].register("something")
>>> len(r['myns'])
1
>>> r['myns'][0]
'something'
>>> "something" in r['myns']
True
>>> for obj in r['myns']:
... print(obj)
something

	
register(item)

	Register a new object

	Parameters:	item – Object to register

	
unregister(item)

	Unregister an existing object. Raises a ValueError in case object
does not exists. If the same object was registered twice, only the
first registered object will be unregister.

	Parameters:	item – Object to unregister

	
class flask_registry.registries.core.DictRegistry

	Basic registry that just keeps a key, value pairs. Provides normal
dict-style access to the registry:

>>> from flask import Flask
>>> from flask_registry import Registry, DictRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> r['myns'] = DictRegistry()
>>> r['myns'].register("mykey", "something")
>>> len(r['myns'])
1
>>> r['myns']["mykey"]
'something'
>>> "mykey" in r['myns']
True
>>> for k, v in r['myns'].items():
... print("%s: %s" % (k,v))
mykey: something

	
register(key, value)

	Register a new object under a given key.

	Parameters:	
	key – Key to register object under

	item – Object to register

	
unregister(key)

	Unregister an object under a given key. Raises KeyError in case
the given key doesn’t exists.

	
class flask_registry.registries.core.SingletonRegistry

	Basic registry that just keeps a single object.

>>> from flask import Flask
>>> from flask_registry import Registry, SingletonRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> r['singleton'] = SingletonRegistry()
>>> r['singleton'].register("test string")
>>> r['singleton'].get()
'test string'
>>> r['singleton'].register("another string")
Traceback (most recent call last):
 ...
RegistryError: Object already registered.
>>> r['singleton'].unregister()
>>> r['singleton'].get() is None
True
>>> r['singleton'].unregister()
Traceback (most recent call last):
 ...
RegistryError: No object to unregister.

	
get()

	Get the registered object

	
register(obj)

	Register a new singleton object

	Parameters:	obj – The object to register

	
unregister()

	Unregister the singleton object

	
class flask_registry.registries.core.ImportPathRegistry(initial=None, exclude=None, load_modules=False)

	Registry of Python import paths. Supports simple discovery of modules
without loading them.

>>> from flask import Flask
>>> from flask_registry import Registry, ImportPathRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> r['myns'] = ImportPathRegistry(initial=[
... 'flask_registry.registries.*',
... 'flask_registry'])
>>> for imp_path in r['myns']:
... print(imp_path)
flask_registry.registries.appdiscovery
flask_registry.registries.core
flask_registry.registries.modulediscovery
flask_registry.registries.pkgresources
flask_registry

When using star imports it is sometimes useful to exclude certain imports:

>>> r['myns2'] = ImportPathRegistry(
... initial=['flask_registry.registries.*',],
... exclude=['flask_registry.registries.core']
...)
>>> for imp_path in r['myns2']:
... print(imp_path)
flask_registry.registries.appdiscovery
flask_registry.registries.modulediscovery
flask_registry.registries.pkgresources

	Parameters:	
	initial – List of initial import paths.

	exclude – A list of import paths to not register. Useful together
with star imports ('*'). Defaults to [].

	load_modules – Load the modules instead of just registering the
import path. Defaults to False.

	
register(import_path)

	Register a new import path

	Parameters:	import_path – A full Python import path (e.g.
somepackge.somemodule) or Python star import path to find all
modules inside a package (e.g. somepackge.*).

	
unregister(*args, **kwargs)

	It is not possible to unregister import paths.

	
class flask_registry.registries.core.ModuleRegistry(with_setup=True)

	Registry for Python modules with setup and teardown functionality.

Each module may provide a setup() and teardown() function which
will be called when the module is registered. The name of the methods
can be customized by subclassing and setting the class attributes
setup_func_name and teardown_func_name.

Any extra arguments and keyword arguments to register and
unregister is passed to the setup and teardown functions.

Example:

import mod

registry = ModuleRegistry(with_setup=True)
registry.register(mod, arg1, arg2, kw1=...)
Will call mod.setup(arg1, arg2, kw1=...)

	Parameters:	with_setup – Call setup/teardown function when
registering/unregistering modules. Defaults to True.

	
register(module, *args, **kwargs)

	

	Parameters:	
	module – Module to register.

	args – Argument passed to the module setup function.

	kwargs – Keyword argument passed to the module setup function.

	
setup_func_name = 'setup'

	Name of setup function. Defaults to setup.

	
teardown_func_name = 'teardown'

	Name of teardown function. Defaults to teardown.

	
unregister(module, *args, **kwargs)

	

	Parameters:	
	module – Module to unregister.

	args – Argument passed to the module teardown function.

	kwargs – Keyword argument passed to the module teardown function.

Application Discovery

The application discovery registries provide discovery functionality useful
for dynamically constructing Flask applications based on configuration
variables. This allows a developer to package config, blueprints and extensions
into isolated and reusable packages which a framework can dynamically install
into a Flask application.

Such a package (named tests) could look like:

	tests.views – contains blueprints which should be registered on the
application object.

	tests.mockext – contains a setup_app() method which be used to
install any Flask extensions on the application object.

	tests.config – contains configuration variables specific for this
module.

Following is a simplified example of a Flask application factory, that will
load config, extensions and blueprints:

>>> from flask import Flask, Blueprint
>>> from flask_registry import Registry, PackageRegistry
>>> from flask_registry import ExtensionRegistry
>>> from flask_registry import ConfigurationRegistry
>>> from flask_registry import BlueprintAutoDiscoveryRegistry
>>> class Config(object):
... PACKAGES = ['tests']
... EXTENSIONS = ['tests.mockext']
... USER_CFG = True
>>> def create_app(config):
... app = Flask('myapp')
... app.config.from_object(config)
... r = Registry(app=app)
... r['packages'] = PackageRegistry(app)
... r['extensions'] = ExtensionRegistry(app)
... r['config'] = ConfigurationRegistry(app)
... r['blueprints'] = BlueprintAutoDiscoveryRegistry(app=app)
... return app
>>> config = Config()
>>> app = create_app(config)

Packages

The config variable PACKAGES specifies the list of Python packages, which
ConfigurationRegistry and BlueprintAutoDiscoveryRegistry
will search for config.py and views.py modules inside.

>>> for pkg in app.extensions['registry']['packages']:
... print(pkg)
tests

Extensions

The config variable EXTENSIONS specifies the list of Python packages,
which the ExtensionRegistry will load and call setup_app(app) on,
to dynamically initialize Flask extensions.

>>> for pkg in app.extensions['registry']['extensions']:
... print(pkg)
tests.mockext

Configuration

The ConfigurationRegistry will merge any package defined config, with the
application config without overwriting already set variables in the application
config:

>>> config.USER_CFG
True
>>> import tests.config
>>> tests.config.USER_CFG
False
>>> app.config['USER_CFG']
True

Blueprints

The BlueprintAutoDiscoveryRegistry will search for blueprints defined
inside a views module in each package defined in PACAKGES. It will
also register the discovered blueprints on the Flask application.
Each views module should define either a single blueprint in the variable
blueprint and/or multiple blueprints in the variable blueprints:

>>> from tests import views
>>> isinstance(views.blueprint, Blueprint)
True
>>> len(views.blueprints)
2
>>> for k in sorted(app.blueprints.keys()):
... print(k)
test
test1
test2

	
class flask_registry.registries.appdiscovery.PackageRegistry(app)

	Specialized ImportPathRegistry that takes the initial list of import
paths from the PACKAGES configuration variable in the application.

	Parameters:	app – The Flask application object from which includes a PACAKGES
variable in it’s configuration.

	
class flask_registry.registries.appdiscovery.ExtensionRegistry(app)

	Flask extensions registry (Specialized ListRegistry). Loads all
extensions specified by EXTENSIONS configuration variable.
The registry will look for a setup_app function in the extension and
call it if it exists.

Example configuration:

EXTENSIONS = [
 'invenio.ext.debug_toolbar',
 'invenio.ext.menu:MenuAlchemy',
]

	Parameters:	app – Flask application to get configuration from.

	
register(app, ext_name)

	Register a Flask extensions and call setup_app() on it.

	Parameters:	
	app – Flask application object

	ext_name – An import path (e.g. a package, module, object) which
when loaded has an method setup_app().

	
unregister()

	It is not possible to unregister configuration.

	
class flask_registry.registries.appdiscovery.ConfigurationRegistry(app, registry_namespace=None)

	Specialized ModuleDiscoveryRegistry that search for config modules
in a list of Python packages and merge them into the Flask application
config without overwriting already set variables.

	Parameters:	
	app – A Flask application

	registry_namespace – The registry namespace of an
ImportPathRegistry with a list Python packages to search for
config modules in. Defaults to packages.

	
register(new_object)

	Register a new config module.

	Parameters:	new_object – The configuration module.
app.config.from_object() will be called on it.

	
unregister(*args, **kwargs)

	It is not possible to unregister configuration.

	
class flask_registry.registries.appdiscovery.BlueprintAutoDiscoveryRegistry(module_name=None, app=None, with_setup=False, silent=False)

	Specialized ModuleAutoDiscoveryRegistry that search for views
modules in a list of Python packages and register blueprints found inside
them.

Blueprints are loaded by searching for a variable blueprints
(list of Blueprint instances) or blueprint (a
Blueprint instance). If found, the blueprint will be registered on the
Flask application.

A blueprint URL prefix can be overwritten using the
BLUEPRINTS_URL_PREFIXES variable in the application configuration:

BLUEPRINTS_URL_PREFIXES = {
 '<blueprint name>': '<new url prefix>',
 # ...
}

Module Discovery

The module discovery registries provide discovery functionality useful
for searching a list of Python packages for a specific module name, and
afterwards registering the module. This is used to e.g. load and register
Flask blueprints by BlueprintAutoDiscoveryRegistry.

Assume e.g. we want to discover the helpers module from the tests
package. First we initialize the registry:

>>> from flask import Flask
>>> from flask_registry import Registry, ModuleDiscoveryRegistry
>>> from flask_registry import ImportPathRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)

We then create the list of packages to search through using an
ImportPathRegistry:

>>> r['mypackages'] = ImportPathRegistry(initial=['tests'])

Then, initialize the ModuleDiscoveryRegistry and run the discovery:

>>> r['mydiscoveredmodules'] = ModuleDiscoveryRegistry(
... 'helpers', registry_namespace='mypackages')
>>> len(r['mydiscoveredmodules'])
0
>>> r['mydiscoveredmodules'].discover(app=app)
>>> len(r['mydiscoveredmodules'])
1

Lazy discovery

Using RegistryProxy you may lazily discover modules. Above example using
lazy loading looks like this:

>>> from flask_registry import RegistryProxy
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> pkg_proxy = RegistryProxy('mypackages', ImportPathRegistry,
... initial=['tests'])
>>> mod_proxy = RegistryProxy('mydiscoveredmodules',
... ModuleDiscoveryRegistry,
... 'helpers',
... registry_namespace=pkg_proxy)
>>> 'mypackages' in r
False
>>> 'mydiscoveredmodules' in r
False
>>> with app.app_context():
... mod_proxy.discover(app=app)
>>> 'mypackages' in r
True
>>> 'mydiscoveredmodules' in r
True

	
class flask_registry.registries.modulediscovery.ModuleDiscoveryRegistry(module_name, registry_namespace=None, with_setup=False, silent=False)

	Specialized ModuleRegistry that will search a list of Python packages
in an ImportPathRegistry or ModuleRegistry for a specific module
name. By default the list of Python packages is read from the packages
registry namespace.

Packages may be excluded during the discovery using a configuration
variables constructed according to the following pattern:

<NAMESPACE>_<MODULE_NAME>_EXCLUDE

where <NAMESPACE> should be replaced by the registry_namepsace, and
<MOUDLE_NAME> should be replaced with module_name. Example:
PACKAGES_VIEWS_EXCLUDE. All namespaces are capitalized and have dots
replaced with underscores.

Subclasses of ModuleDiscoveryRegistry may overwrite the internal
_discover_module() method to provide specialized discovery (see e.g.
BlueprintAutoDiscoveryRegistry).

	Parameters:	
	module_name – Name of module to search for in packages.

	registry_namespace – The registry namespace of an
ImportPathRegistry or ModuleRegistry with a list Python
packages to search for module_name modules in. Alternatively to
a registry namespace an instance of a RegistryProxy or Registry
may also be used. Defaults to packages.

	with_setup – Call setup and teardown function on discovered modules.
Defaults to False (see ModuleRegistry).

	silent – if set to True import errors are ignored. Defaults to
False.

	
discover(app=None)

	Perform module discovery, by iterating over the list of Python packages
in the order they are specified.

	Parameters:	app – Flask application object from where the list of Python
packages is loaded (from the registry_namespace). Defaults to
current_app if not specified (thus requires you are working
in the Flask application context).

	
class flask_registry.registries.modulediscovery.ModuleAutoDiscoveryRegistry(module_name, app=None, registry_namespace=None, with_setup=False, silent=False)

	Specialized ModuleDiscoveryRegistry that will discover modules
immediately on initialization.

	Parameters:	
	module_name – Name of module to search for in packages.

	app – Flask application object

	registry_namespace – The registry namespace of an
ImportPathRegistry or ModuleRegistry with a list Python
packages to search for module_name modules in. Alternatively to
a registry namespace an instance of a RegistryProxy or Registry
may also be used. Defaults to packages.

	with_setup – Call setup and teardown function on discovered modules.
Defaults to False (see ModuleRegistry).

	silent – if set to True import errors are ignored. Defaults to
False.

Package Resources

Package resource registries may be used to discover e.g. package resources
as well as loading entry points.

Entry points

setuptools entry points are a simple way for packages to “advertise”
Python objects, so that frameworks can search for these entry points.
setup.py files for instance allows you to specify console_scripts
entry points, which will install scripts into system path for you.

The EntryPointRegistry allows you to easily register these entry points
into your Flask application:

>>> from flask import Flask
>>> from flask_registry import Registry, EntryPointRegistry
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> r['scripts'] = EntryPointRegistry('console_scripts')
>>> 'easy_install' in r['scripts']
True

Entry points are specified in you setup.py, e.g.:

setup(
 # ...
 entry_points={
 'flask_registry.test_entry': [
 'testcase = flask_registry:RegistryBase',
]
 },
 # ...
)

>>> r['entrypoints'] = EntryPointRegistry(
... 'flask_registry.test_entry', load=True)
>>> 'testcase' in r['entrypoints']
True
>>> from flask_registry import RegistryBase
>>> r['entrypoints']['testcase'][0] == RegistryBase
True

See http://pythonhosted.org/setuptools/pkg_resources.html#entry-points for
more information on entry points.

Resource files

The PkgResourcesDirDiscoveryRegistry will search a list of Python
packages for a specific resource directory and register all files found in the
directories.

Assume e.g. a package tests have a directory resources with one file
in it called testresource.cfg. This file can be discovered in the following
manner:

>>> import os
>>> app = Flask('myapp')
>>> r = Registry(app=app)
>>> from flask_registry import ImportPathRegistry
>>> from flask_registry import PkgResourcesDirDiscoveryRegistry
>>> r['packages'] = ImportPathRegistry(initial=['tests'])
>>> r['res'] = PkgResourcesDirDiscoveryRegistry('resources', app=app)
>>> os.path.basename(r['res'][0]) == 'testresource.cfg'
True

	
class flask_registry.registries.pkgresources.EntryPointRegistry(entry_point_ns, load=True)

	Entry point registry. Based on DictRegistry with keys being
the entry point group, and the value being a list of objects referenced
by the entry points.

	Parameters:	
	entry_point_ns – Entry point namespace

	load – if False, entry point will not be loaded. Defaults to
True.

	
register(entry_point)

	Register a new entry point

	Parameters:	entry_point – The entry point

	
class flask_registry.registries.pkgresources.PkgResourcesDirDiscoveryRegistry(module_name, app=None, registry_namespace=None, with_setup=False, silent=False)

	Specialized ModuleAutoDiscoveryRegistry that will search a list of
Python packages in an ImportPathRegistry or ModuleRegistry for
a specific resource directory and register all files found in the
directories. By default the list of Python packages is read from the
packages registry namespace.

 Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Registry 0.2.0 documentation

Contributing

See <http://invenio-software.org/wiki/Development/Contributing> for now.

 Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Flask-Registry 0.2.0 documentation

Changelog

Here you can see the full list of changes between each Flask-Registry
release.

Version 0.2.0 (released 2014-06-27)

	ListRegistry now fuly behaves as a list.

	DictRegistry now fuly behaves as a dict.

	Fixes issue with app in ModuleAutoDiscoveryRegistry.

	Excludes option for ImportPathRegistry.

	Fixes handling of missing package resource directory.

	Fixes issue in configuration loading.

	Allows removal of registries.

	Fixes ImportError and SyntaxError handling.

	Documentation and code coverage improvements.

	Differentiates between missing and broken modules.

	New BlueprintAutoDiscoveryRegistry.

	New SingletonRegistry.

Version 0.1

	Initial public release

 Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Flask-Registry 0.2.0 documentation

License

Copyright (C) 2013 CERN.

Flask-Registry is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Flask-Registry is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Flask-Registry; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

In applying this licence, CERN does not waive the privileges and immunities granted to it by virtue of its status as an Intergovernmental Organization or submit itself to any jurisdiction.

The full license text can be found below (GNU General Public License).

Authors

Flask-Registry is developed for use in Invenio [http://invenio-software.org] digital library software.

Contact us at info@invenio-software.org

Contributors

	Lars Holm Nielsen <lars.holm.nielsen@cern.ch>

	Jiri Kuncar <jiri.kuncar@cern.ch>

	Esteban J. G. Gabancho <esteban.jose.garcia.gabancho@cern.ch>

	Tibor Simko <tibor.simko@cern.ch>

	Yoan Blanc <yoan@dosimple.ch>

GNU General Public License

	GNU GENERAL PUBLIC LICENSE

	Version 2, June 1991

	Copyright (C) 1989, 1991 Free Software Foundation, Inc.

	59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software–to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

	This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

	You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

	You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

	You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

	You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

	You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

	Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

	If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

	If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

	The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

	If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

	BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

	IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w’ and `show c’; they could even be
mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

 Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Flask-Registry 0.2.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 flask_registry	

 	
 	
 flask_registry.registries	

 	
 	
 flask_registry.registries.appdiscovery	

 	
 	
 flask_registry.registries.core	

 	
 	
 flask_registry.registries.modulediscovery	

 	
 	
 flask_registry.registries.pkgresources	

 Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Flask-Registry 0.2.0 documentation

Index

 B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

B

 	

 	BlueprintAutoDiscoveryRegistry (class in flask_registry.registries.appdiscovery)

C

 	

 	ConfigurationRegistry (class in flask_registry.registries.appdiscovery)

D

 	

 	DictRegistry (class in flask_registry.registries.core)

 	

 	discover() (flask_registry.registries.modulediscovery.ModuleDiscoveryRegistry method)

E

 	

 	EntryPointRegistry (class in flask_registry.registries.pkgresources)

 	

 	ExtensionRegistry (class in flask_registry.registries.appdiscovery)

F

 	

 	flask_registry (module), [1]

 	flask_registry.registries (module)

 	flask_registry.registries.appdiscovery (module), [1]

 	

 	flask_registry.registries.core (module)

 	flask_registry.registries.modulediscovery (module), [1]

 	flask_registry.registries.pkgresources (module), [1]

G

 	

 	get() (flask_registry.registries.core.SingletonRegistry method)

I

 	

 	ImportPathRegistry (class in flask_registry.registries.core)

 	

 	init_app() (flask_registry.Registry method)

L

 	

 	ListRegistry (class in flask_registry.registries.core)

M

 	

 	ModuleAutoDiscoveryRegistry (class in flask_registry.registries.modulediscovery)

 	ModuleDiscoveryRegistry (class in flask_registry.registries.modulediscovery)

 	

 	ModuleRegistry (class in flask_registry.registries.core)

N

 	

 	namespace (flask_registry.RegistryBase attribute)

P

 	

 	PackageRegistry (class in flask_registry.registries.appdiscovery)

 	

 	PkgResourcesDirDiscoveryRegistry (class in flask_registry.registries.pkgresources)

R

 	

 	register() (flask_registry.registries.appdiscovery.ConfigurationRegistry method)

 	

 	(flask_registry.RegistryBase method)

 	(flask_registry.registries.appdiscovery.ExtensionRegistry method)

 	(flask_registry.registries.core.DictRegistry method)

 	(flask_registry.registries.core.ImportPathRegistry method)

 	(flask_registry.registries.core.ListRegistry method)

 	(flask_registry.registries.core.ModuleRegistry method)

 	(flask_registry.registries.core.SingletonRegistry method)

 	(flask_registry.registries.pkgresources.EntryPointRegistry method)

 	Registry (class in flask_registry)

 	RegistryBase (class in flask_registry)

 	

 	RegistryError (class in flask_registry)

 	RegistryProxy (class in flask_registry)

S

 	

 	setup_func_name (flask_registry.registries.core.ModuleRegistry attribute)

 	

 	SingletonRegistry (class in flask_registry.registries.core)

T

 	

 	teardown_func_name (flask_registry.registries.core.ModuleRegistry attribute)

U

 	

 	unregister() (flask_registry.registries.appdiscovery.ConfigurationRegistry method)

 	

 	(flask_registry.RegistryBase method)

 	(flask_registry.registries.appdiscovery.ExtensionRegistry method)

 	(flask_registry.registries.core.DictRegistry method)

 	(flask_registry.registries.core.ImportPathRegistry method)

 	(flask_registry.registries.core.ListRegistry method)

 	(flask_registry.registries.core.ModuleRegistry method)

 	(flask_registry.registries.core.SingletonRegistry method)

 Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Flask-Registry 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, CERN.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/ajax-loader.gif

